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Disentangling the North Pacific Meridional Mode from
tropical Pacific variability
Ingo Richter 1✉, Malte F. Stuecker 2,3, Naoya Takahashi 3 and Niklas Schneider2,3

Variations of sea-surface temperature (SST) in the subtropical North Pacific have received considerable attention due to their potential
role as a precursor of El Niño-Southern Oscillation (ENSO) events in the tropical Pacific as well as their role in regional climate impacts.
These subtropical SST variations, known as the North Pacific Meridional Mode (PMM), are thought to be triggered by extratropical
atmospheric forcing and amplified by air-sea coupling involving surface winds, evaporation, and SST. The PMM is often defined through
a statistical technique called maximum covariance analysis (MCA) that identifies patterns of maximum covariability between SST and
surface winds. Here we show that SST alone is sufficient to reproduce the MCA-based PMM index with near-perfect correlation. This
dominance of the SST suggests that the MCA-based definition of the PMM may not be ideally suited for capturing two-way wind-SST
interaction or, alternatively, that this interaction is relatively weak. We further show that the MCA-based PMM definition conflates
intrinsic subtropical and remote ENSO variability, thereby undermining its interpretation as an ENSO precursor. Our findings indicate
that, while air-sea coupling may be important for variability in the subtropical North Pacific, it cannot be reliably identified by the MCA-
based definition of the PMM. This highlights the need for refined tools to diagnose variability in the subtropical North Pacific.
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INTRODUCTION
Climate variability in the subtropical North Pacific has been widely
studied1–7. While the variability of Pacific sea-surface temperatures
(SSTs) in the low latitudes is dominated by El Niño-Southern
Oscillation8–10 (ENSO), numerous studies have suggested that the
subtropical North Pacific may be home to an independent variability
pattern that is maintained by the two-way coupling (hereafter just
“coupling”) between surface winds, evaporation, and SST (the so-
called wind-evaporation-SST or WES feedback11,12; see “Methods” for
a short description), and forms a central part of the North Pacific
Meridional Mode1 (PMM hereafter). In its positive phase, the PMM
pattern consists of warm SST anomalies that extend southwestward
from the California coast toward the western equatorial Pacific,
accompanied by a weakening of the northeast trade winds (Fig. 1a).
The initial forcing of this pattern is from intrinsic atmospheric
variability in the midlatitudes that extends into the subtropics1.
The PMM is known to have its own regional climate impacts,

such as influencing droughts in California13 and modulating
eastern Pacific hurricane occurrence14, but has probably garnered
wider attention due to its potential role as a precursor of
ENSO15–18. It has been shown that atmospheric variability in the
extratropical North Pacific, which is largely stochastic in nature4,
can seed the development of the PMM during northern hemi-
sphere winter19 (December-January-February or DJF). As the PMM
matures in spring (March-April-May or MAM), it propagates toward
the equator as a coupled wind-SST mode, an intrinsic property of
the WES feedback11,12. When the SST pattern approaches the
equator, the accompanying weakening of the trade winds can
initiate the development of an El Niño event that typically matures
in the following winter (DJF) and couples tropical winds, SST and
ocean circulation. Predicting El Niño from MAM is notoriously
difficult16. It has been suggested that the PMM may help to
overcome this ENSO predictability barrier2,20 and enable skillful

ENSO predictions at longer lead times. This could also offer a
theoretical framework for understanding how stochastic atmo-
spheric variability in the North Pacific can influence ENSO.

RESULTS
The problem of defining the PMM
Since the PMM is situated just northeast to the region of intense
ENSO activity, a major problem has been how to diagnose PMM
variability without contamination by the strong ENSO signal. The
conventional approach has been to first remove the ENSO signal
by linearly regressing out an indicator of ENSO activity called the
cold tongue index (CTI; see “Methods”). In the second step, a
statistical technique called maximum covariance analysis (MCA;
also known as singular value decomposition or SVD; see
“Methods”) is applied to find the dominant pattern of coupled
SST-wind variability. The MCA yields two spatial patterns and
temporal expansion coefficients (one for each of the two input
fields) that form the basis of the PMM definition1,21. Studies of the
PMM often use the SST pattern to define an index of PMM
variability1,2,6,7,14,17,22 (see “Methods”). We will refer to this index as
the PMM index, or, where clarification is necessary, as the
reference PMM-T index. Two assumptions are key to the MCA-
based PMM definition: (1) regressing out the CTI is an effective
way of removing ENSO variability; (2) MCA can reliably identify
coupled SST-wind variability in the subtropics. While assumption
(1) has been examined to some extent1,2,22,23, assumption (2) has
received little attention. In the following we provide further
evidence that assumption (1) is problematic, and show that there
are caveats to assumption (2) as well. This has important
implications for how we can diagnose coupled variability in the
subtropical North Pacific, and also raises questions about the
utility of the PMM as an independent precursor of ENSO.
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Caveats regarding the use of MCA for identifying coupled
wind-SST variability in the subtropical North Pacific
The PMM is thought to rely on the WES feedback, which is distinct
from the Bjerknes feedback24 which governs equatorial Pacific
variability and ENSO. By considering the coupled variability of SST
and surface winds, the MCA aims to diagnose the coupled

processes that underlie the PMM and its equatorward propaga-
tion. Statistical analysis of SST alone, however, yields a pattern that
is very similar (Fig. 1b; based on principal component analysis
(PCA) as described in “Methods”) to the one derived by MCA
(Fig. 1a). The patterns of SST, wind, and sea-level pressure (SLP) are
correlated with the original PMM patterns at 0.97 to 0.98, while the

e

Fig. 1 The reference PMM-T and alternative indices. a Regression of the Pacific Meridional Mode (PMM) index (derived via MCA) onto
anomalies of SST (°C, shading), surface winds (m s−1, vectors), and sea-level pressure (contours, interval of 0.25 hPa). Negative contour lines are
dashed and the 0-contour line is omitted. Only values significant at the 95% confidence level are shown. b Similar to (a), but for the expansion
coefficient of a principal component analysis of SST (PMM_EOF). c Similar to (a), but for an index that is simply the area average of SST
anomalies in the gray box, and without removing ENSO variability beforehand. d Like (a), but using a more thorough way of removing ENSO
variability (see text). e Time series of three of the indices in (a), (c), and (d), normalized by their respective standard deviations. The time series
of (b) is not shown as it is very similar to that of (a). All fields are from the NCEP/NCAR Reanalysis.
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SST expansion coefficient correlates with the PMM SST index
(defined as the expansion coefficient of the SST pattern) at 0.95
(all pattern correlations significant above the 99.9% level, i.e., P-
value < 0.001). Further sensitivity tests of the MCA reveal, that the
MCA SST pattern is rather insensitive to either replacing Pacific
winds with those from a remote area or to swapping the first and
second half of the SST record (Supplementary Note 1 and
Supplementary Fig. 4), again highlighting the dominance of the
SST field. Thus, the surface winds only make a very small
contribution to the reference PMM-T index. This suggests that
the MCA of three fields can be replaced by PCA of only one field,
SST, without much loss of information (90% variance explained).
Indeed, even a simple box average of SST (PMM_aave; Fig. 1c)
captures a substantial portion of the PMM variability, with the
patterns correlated at ~0.95 and the time series at 0.90
(Supplementary Fig. 1b; P-value < 0.001 for both pattern and
temporal correlations). Even when the ENSO influence is not
regressed out prior to calculating the area average, the similarity
with the reference PMM-T index and its patterns is high (Fig. 1c),
with pattern correlation values of 0.80 for SST and wind fields, and
0.78 for SLP (P-value < 0.001).
Previous studies have raised concerns about the use of MCA for

identifying coupled variability patterns25,26. In particular, it has
been argued that the two patterns produced by MCA either
explain little of the total covariability or, alternatively, are
dominated by the EOFs of the individual fields, in which case
they contain no new information25. Our analysis suggests that the
reference PMM SST pattern falls into the latter category: it contains
little information that cannot be gathered from the consideration
of SST alone. Another possibility is that the MCA actually works
well but that the SST-wind coupling is weak due to atmospheric
noise.
The PMM wind pattern is less well represented by a PCA of wind

only (Supplementary Fig. 2). Nevertheless, the PMM wind index,
too, can be approximated by a simple area average of SLP in the
subtropical North Pacific (Supplementary Fig. 2c). This SLP area
average is correlated to the subtropical SST area average (Fig. 1c)
in much the same way as the reference PMM SST and wind indices
(Supplementary Fig. 3), with highest correlation when the former
leads the latter. SLP is influenced by SSTs but also feeds back on
them through its control of near-surface winds and latent heat
flux. It is therefore not surprising that an area average of SLP can
stand in for 10m winds. This is supported by the high similarity of
the wind patterns in Supplementary Fig. 2a, c. Using SLP instead of
10m winds can be beneficial, as the latter is more easily
measured. We note that the relation between SLP and surface
winds is complicated by the influence of vertical mixing27, which
may also be an aspect of the WES feedback that deserves
further study.
The singular value of the PMM MCA pattern passes a bootstrap

test (see “Methods”) with a p-value of < 0.001. Further analysis,
however, suggests that this test may be too permissive and thus
not sufficient to establish a statistically significant relation (see
Supplementary Note 2 and Supplementary Fig. 4d).

The problem of incomplete removal of the ENSO influence
The PMM is considered to be largely independent of ENSO
because it relies on a different type of air-sea interaction, namely
the WES feedback. ENSO is an equatorial Pacific phenomenon but
has worldwide impacts, including in the subtropical North
Pacific23. Therefore, in the commonly used PMM definition, the
ENSO signal is removed by regressing out the CTI from all fields
prior to analysis1. The averaging area for this ENSO index extends
from the date line to the eastern equatorial Pacific.
Since the original work defining the PMM was published, an

additional type of El Niño has been identified that is centered in
the central equatorial Pacific, variously referred to as El Niño

Modoki or Central Pacific (CP) Niño, and which is distinct from the
canonical El Niño, which is centered in the eastern equatorial
Pacific and also referred to as Cold Tongue (CT) Niño28,29.
Considering the geographical location of the CP Niño, it is obvious
that it cannot be completely removed by regressing out the CTI;
indeed, it has been shown that two independent indices are
needed to account for both flavors of ENSO29. This, however,
means that the standard PMM index is contaminated by the CP
ENSO signal, a fact that is apparent in the lagged correlations of
the PMM and SST in the western equatorial Pacific (Fig. 2).
Correlations at lag 0 are about +0.6 and remain statistically
significant (P-value < 0.05) at all lags from −12 to +12 months.
Moreover, correlations are roughly symmetric around the peak at
lag 0. Thus, it is difficult to argue that the PMM is a precursor of CP
ENSO, as has often been done in the literature. Rather, CP ENSO is
built into the PMM by definition, an issue that has previously been
raised23. We further note that contamination by the ENSO signal
may also affect statistical prediction models based on linear
inverse modeling (LIM; see “Methods”), which can be used to
identify optimal initial SSTs (comprised of a number of non-
orthogonal damped eigenmodes) for ENSO development (i.e.,
precursors) under stochastic forcing30–32. Whereas the extratropi-
cal portion of the precursor, which resembles the PMM, is often
emphasized30–32, the precursor includes an SST signal in the
central equatorial Pacific. This indicates that LIM, too, may not be
able to clearly separate extratropical and tropical ENSO precursors.

a

b

Fig. 2 Incomplete ENSO removal in the reference PMM-T index.
a Lagged regressions of SST in the western equatorial Pacific
(150°W-180°, 5°S-5°N) for the reference PMM-T index (green line)
and the PMM_CPCT (blue line), which uses a more through method
for removing ENSO prior to the PMM calculation. Negative lags
indicate that the PMM leads the SST index and vice versa. Values
that are statistically significant at the 95% level, based on a two-
tailed Student’s t-test, are marked by a filled circle. b Like (a), but for
the Niño 1+2 index (SST averaged over 90°-80°W, 10°S-0°). All fields
are from the NCEP/NCAR Reanalysis.
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One could argue that CP variability is actually part of the PMM
itself because previous studies, as well as the present one, have
shown a close correspondence between CP ENSO and the PMM. It
is certainly possible to define the PMM in this manner but, in that
case, it becomes difficult to interpret the PMM as an ENSO
precursor. This is because it has been shown here and elsewhere23

that the PMM and CP ENSO have their highest correlation at lag 0.
Consistently, it has been found that the PMM is not very useful in
the prediction of CP ENSO16. More importantly, many studies
indicate that the PMM is a subtropical phenomenon that relies on
thermodynamic air-sea coupling (WES feedback)1–3,22,33 while CP
ENSO is an equatorial phenomenon that relies on dynamic air-sea
coupling (Bjerknes feedback). We therefore believe that the PMM
should be clearly separated from tropical variability.
The CTI not only fails to remove CP ENSO, it also leaves out a

small area between 90°W and the South American coast.
Interestingly, this area, just off Peru, is precisely where El Niño
was originally discovered (first by local fishermen, then by
scientists34,35), and has been defined as the Niño 1+ 2 region
(see “Methods”). Regressing out the CTI leaves substantial ENSO-
related variability in this region, and this is shown by the cold SST
anomalies in the regression patterns (Fig. 1a, b) and in the lagged
correlations of the PMM and Niño 1+ 2 indices (Fig. 2b).
A study by Takahashi et al.29 recommends characterizing CP

and CT variability by two indices that are roughly orthogonal to
each other. We refer to this index pair as the CPCT index. When
this index is regressed out instead of the CTI before performing
MCA, both the cold and warm SST anomalies in the western and
eastern equatorial Pacific, which characterize the reference PMM
pattern (Fig. 1a), are absent (Fig. 1d), and the wind anomalies over
the western equatorial Pacific (130°W-160°E, 5°S-5°N) weaken from
0.25 to 0.10m/s. In the North Pacific (north of 20°N), on the other
hand, the pattern remains quite similar to that of the reference
PMM, although the positive SLP anomalies over the Gulf of Alaska
are missing. Furthermore, positive SST anomalies emerge in the
southeastern Pacific, leading to a pattern that is roughly
symmetric about the equator. The lagged regression of the
PMM and PMM_CPCT indices with SST in the western equatorial
Pacific (Fig. 2a) confirms that regressing out the CPCT index pair
effectively removes the CP ENSO signal from the PMM, with
correlations not exceeding the 95% significance level for any lead
time. The time series of the PMM_CPCT index (Fig. 1e) shows
strong differences with the PMM index around the 1982/1983 and
1997/1998 extreme El Niño events, which raises the possibility that
the differences in the PMM and PMM_CPCT patterns are mostly
due to those extreme events. By excluding strong ENSO years
from the MCA1 we have verified that this is not the case; the
patterns remain almost unchanged (not shown).
Lagged regressions of SST, winds and SLP on the MAM PMM and

PMM_CPCT indices show a conspicuous difference in the evolution
of these fields (Fig. 3). Both the PMM and the PMM_CPCT start with
negative SLP anomalies in the North Pacific that extend into the
subtropics and are accompanied by a weakening of the northeast
trade winds. However, while the PMM shows SST and wind
anomalies extending into the western equatorial Pacific during
MAM, the PMM_CPCT does not: The SST anomalies are confined to
the subtropics and the western equatorial wind anomalies are
much weaker. Consistently, the PMM progresses to El Niño-like
conditions toward the end of the year, whereas the PMM_CPCT
does not, which indicates a weaker link between PMM-like patterns
and subsequent ENSO development.
The lagged regressions of the PMM_CPCT with the Niño 1+ 2

index (Fig. 2b) reveals a further factor complicating ENSO removal,
which is the autocorrelation of ENSO variability. While regressing
out the CPCT index pair leads to the complete removal of the Niño
1+ 2 variability at lag 0, correlations reassert themselves at both
increasing and decreasing lags, indicating the limits of regressing
out the simultaneous ENSO signal; this includes the possibility of

equatorial SST anomalies in the preceding season influencing
PMM development. In addition, ENSO variance is more pro-
nounced in winter than in other seasons. Therefore, a more
thorough procedure for regressing out ENSO-related variability
would have to account for its seasonality.
Incomplete ENSO removal is also evident in Fig. 3b, which

shows positive SST anomalies in the eastern equatorial Pacific in
DJF, before the peak of the PMM. These CT El Niño-like SST
anomalies may explain the more meridionally symmetric SST
distribution about the equator, and the northward shift in the
North Pacific SLP anomalies, both of which are consistent with
equatorial forcing on the extratropics, rather than the other way
round. As such, we do not suggest that regressing out the CPCT
index pair solves the ENSO removal problem. The above analysis,
however, does show that the PMM pattern is sensitive to how
ENSO removal is performed.

The PMM definition in model diagnostics
The PMM is often analyzed in climate models, for example in the
context of seasonal predictions16, climate model evaluation36,37, or
climate change38,39. Typically, these studies use the reference
definition of the PMM, which involves regressing out the CTI from
fields and subsequently applying MCA. When performed on
observations, the first mode invariably shows the PMM pattern.
For model output, on the other hand, this is not necessarily the
case, with 15 of the 44 global climate models examined here
yielding the PMM as the second or even third MCA mode (Fig. 4a).
Climate models tend to feature ENSO variability that extends too
far westward40,41. This may change the amount of residual ENSO
variability after CTI removal and thus shift the PMM-pattern to a
higher mode. An important implication is that mechanically
applying the reference PMM definition to climate models may
yield misleading results because the first MCA mode will be
identified as the PMM, whereas in some models the PMM is
actually represented by higher modes, as is the case for the widely
used CESM2. Therefore, care must be taken to pick the mode that
is most similar to the observed PMM (as measured by pattern
correlation).
When the PMM is not represented by the first MCA mode, it also

tends to be quite different from the corresponding SST PCA (see
“Methods”). In other words, in those models, representing the
PMM with SST only is less successful than it is for the observations.
In the remaining models, however, the correlation between the
PMM and the PMM_PCA is invariably above 0.8 and often quite
close to 1. Even when the reference PMM and PMM_PCA are
poorly correlated, this does not necessarily mean that the MCA
adequately represents coupled SST-wind variability; rather, the
PCA may partition the residual ENSO variability in a different
manner.
When the simple SST area average defined in Fig. 1c (CTI not

regressed out) is used to represent PMM variability in the climate
models, the correlations with the standard PMM are reasonably
high (Fig. 4b), even for those models that have a low correlation
between the PMM and PMM_PCA. This indicates that the simple
area average provides a relatively robust measure of the PMM.
The reason why some models do not represent the PMM in the

first MCA mode deserves further analysis. A PCA analysis of SST in
the tropical Pacific provides some clues. For this analysis, no ENSO
index is regressed out prior to PCA. Without regressing out ENSO,
the PMM-like SST pattern is well represented by the second EOF in
the NCEP/NCAR Reanalysis (Fig. 4c) and the majority of the models
(Fig. 4d). In the outlier models, however, the second EOF pattern
reveals a conspicuous difference in the South Pacific (Fig. 4e): the
southeastward branch of warm SST anomalies that is only weakly
developed in the observations is quite pronounced in the outlier
models and extends toward South America, leading to a V-shaped
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Fig. 3 Sensitivity to the index used for ENSO removal. a, c, e, g Lagged regressions of anomalous SST (°C, shading), surface winds (m s−1,
vectors), and sea-level pressure (contours, interval of 0.25 hPa) onto the MAM reference PMM index. The individual panels show, from top to
bottom, seasonal averages for winter (DJF), spring (MAM), summer (JJA), and fall (SON). Only values significant at the 95% confidence level are
shown. b, d, f, h Like (a, c, e, g), but for the PMM_CPCT index, for which the ENSO signal is removed more thoroughly prior to analysis. All
fields are from the NCEP/NCAR Reanalysis.
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(a)

(b)

Fig. 4 The PMM index in CMIP6 GCMs. a Correlations between the PMM and the PMM_PCA for the NCEP/NCAR Reanalysis and 44 coupled
general circulation model (GCM)s from the CMIP6 intercomparison. For the models, the PMM is taken as the MCA mode that has the highest
pattern correlation with the PMM mode of the NCEP/NCAR reanalysis. The models for which this is not the first MCA mode are shaded in light
blue. b As in (a), but for the correlation of the PMM with SST averaged over the area shown in Fig. 1c. c Second EOF of the PCA of SST for the
NCEP/NCAR reanalysis. d As in (c) but averaged over the CMIP models for which the PMM is the first MCA mode. e As in (c) but averaged over
the CMIP models for which the PMM is not the first MCA mode (light blue shading in (a)). All correlations shown in (a) and (b) are significant at
the 95% confidence level.
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pattern that is roughly symmetric about the equator. This results
in poor pattern correlations with the reference PMM pattern.

DISCUSSION
Our analysis suggests that the MCA-based reference PMM
definition does not reliably identify the wind-SST coupling that
is thought to underpin variability in the subtropical North Pacific
because it is dominated by SST. Nor does it succeed in effectively
removing the influence of ENSO. The resulting PMM index is
therefore contaminated by ENSO variability and cannot be
interpreted easily as an independent precursor of ENSO. A similar
problem surfaces in statistical analyses that derive optimal
precursors based on the LIM framework. As these SST precursors
resemble the PMM, they already contain part of the ENSO
signal30–32.
The above caveats do not necessarily imply that PMM-like

variability cannot serve as a potential precursor to ENSO. Nor does
it discount the importance of the WES feedback for the subtropical
North Pacific. Those findings are supported by multiple lines of
evidence and are most likely robust. For the reasons stated in the
above paragraph, however, we believe that the reference PMM
definition is not optimally suited to representing the PMM, and
that it may overestimate its role as a precursor. Therefore, previous
results should be reexamined in two respects: (1) To what extent is
the ENSO signal already present during the peak of the PMM (in
MAM)? (2) How sensitive is the precursor role of the PMM to the
procedure of ENSO removal?
Many studies have suggested a precursor role for the

PMM2–4,7,15–19,42,43 but only a few studies have attempted to
quantify this effect in seasonal ENSO predictions16,22,44. These
studies have found some limited contribution to ENSO prediction
skill. While a number of model experiments have been conducted
to examine the influence of the PMM on ENSO22,45,46, more
experiments will be needed to quantify the PMM’s contribution to
ENSO prediction skill, and to assess the role of model biases. These
experiments should strive to carefully separate subtropical
precursors from ENSO itself.
The conflation of ENSO and subtropical variability in the PMM

index can also confound multi-model studies of present and
future climate17,37–39 as intermodel differences in the PMM may
just reflect different ENSO characteristics.
To move forward, we suggest using the simple box average of

subtropical SST anomalies (indicated in Fig. 1c). The resulting
index and regression patterns have some similarity with those of
the reference PMM-T index but are not sensitive to how the ENSO
influence is removed, or whether it is removed at all (Supple-
mentary Fig. 1c). Moreover, it is relatively robust across most of the
climate models examined here. This index can be further refined
as shown in Supplementary Fig. 1d. An advantage of using only
SST for PMM diagnosis is that SST is more reliably measured and
extends further back in time. This allows analyzing longer
observational records and, possibly, even paleo proxies. We note
that a number of studies have already used alternative definitions
of the PMM index that mostly rely on SST3,4,16.
Ultimately, it would be desirable to have an index that better

represents the SST-wind coupling, if this coupling is indeed
fundamental to the PMM. Recently, Amaya et al.47 have shown a
promising diagnostic method for a related phenomenon, the
Atlantic Meridional mode. Their method does not rely on MCA or
PCA but rather uses straightforward correlations of SST and
surface wind speed. Application of this method, however, may be
more difficult in the Pacific, where the ENSO influence tends to
overwhelm other signals. We have performed an analysis along
these lines by examining the propagation of SST anomalies from
the subtropical North Pacific toward the equator (Supplementary
Note 3 and Supplementary Fig. 6). The results, however, only
provide very limited support for propagation that is consistent

with the WES feedback. This indicates that more analysis will be
needed to arrive at a satisfactory diagnostic tool for variability in
the subtropical North Pacific.

METHODS
Maximum covariance analysis (MCA) and calculation of the
PMM index
Maximum covariance analysis aims to identify pairs of patterns
that explain a maximum fraction of covariance among two space-
time datasets21. The technique is also often referred to as singular
value decomposition (SVD) but, to distinguish it from the matrix
decomposition method by the same name, we use the term MCA.
For all points in the spatial dimensions of the first dataset, MCA
calculates the temporal covariance with all points in the second
dataset. The resulting covariance matrix is subjected to an
eigenvalue decomposition that identifies the spatial patterns
explaining the largest fraction of covariance. Temporal expansion
coefficients are obtained by projecting the spatial patterns onto
the datasets.
The calculation of the reference PMM index follows the method

outlined by Chiang and Vimont1. For details, please refer to
https://www.aos.wisc.edu/~dvimont/MModes/PMM.html. The
important steps are summarized here: (1) Take the skin
temperature and 10m wind from the NCEP/NCAR Reanalysis.
The analysis region is 175°E to 95°W, 21°S to 32°N, and the analysis
period is fixed as 1950–2005. (2) Mask out land points. (3)
Calculate the anomalies of all fields, i.e., the deviations from the
monthly climatology. (4) Remove the linear trend from all fields.
(5) Regress out the cold tongue index (CTI), a measure of ENSO
activity, which is defined as SST averaged over 180°-90°W, 6°S-6°N.
(6) Calculate the MCA between SST on the one side and the zonal
and meridional surface wind components on the other. (7) Repeat
steps (1)–(5) but use the entire available period (1948–present).
Project the spatial pattern of the first MCA mode onto the SST
time series to obtain the temperature PMM index (PMM T). This is
the index that is most commonly used in the literature. Projecting
the time series of the combined wind components onto first MCA
mode of the wind time series yields the wind PMM index (PMM
W). Chiang and Vimont1 suggest that the latter index mixes
midlatitude wind forcing with the coupled ocean-atmosphere
interaction of the PMM. Thus, the PMM T index is recommended
for analyzing coupled PMM variability48.
We follow exactly the procedure outlined by Chiang and

Vimont1 and perform it on the same dataset (NCEP/NCAR
Reanalysis). The resulting reconstructed PMM index agrees very
well with the one that is made available by Daniel Vimont on his
website48, with a correlation of 0.99. The slight discrepancy may
be due to the details of the software packages used for the MCA
calculation. We take this reconstruction of the PMM index as our
reference.

Principal component analysis
Principal component analysis (PCA), also known as empirical
orthogonal function (EOF) analysis, is similar to MCA but uses only
one dataset to calculate the covariances of all spatial data points.
The resulting matrix is subjected to an eigenvalue decomposition
and the patterns explaining the highest fraction of variability are
identified. The spatial patterns are called EOF modes and their
expansion coefficients, obtained by projecting the EOFs on the
dataset, are called principal components (PCs).
In the present study, we use PCA on the same spatial domain as

for the MCA and prepare the dataset in the same manner as for
the MCA, using steps (1)–(5) outlined under the description of
the MCA.
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Linear inverse modeling (LIM)
LIM is an empirical statistical approach that aims to extract the
essence of a complex non-linear system from data30. If x is the
state vector of a subset of the full system, LIM assumes that it can
be represented by dx=dt ¼ Bx þ ξ, where d/dt indicates the time
derivative, B is a linear operator, ξ is white noise forcing, and
nonlinear terms have been neglected. The linear operator can be
estimated by performing essentially a lagged covariance analysis
on the data: B ¼ τ�1

0 lnfC τ0ð ÞCð0Þ�1g, where C(τ0) is the covariance
matrix at time lag τ0, and C(0)−1 the inverse of the covariance
matrix at lag 0. Based on the linear operator B, optimal precursors
can be calculated through an eigenvalue analysis. The state vector
x can represent a single variable, such as SST, or a collection of
different variables. In order to facilitate the matrix calculations, LIM
is usually performed on a set of leading principal components
from a PCA.

Statistical significance tests
A two-sided Student’s t-test is used to determine the statistical
significance of correlation and regression coefficients. Serial
correlation is accounted for by calculating the effective sample
size.
The statistical significance of MCA modes is calculated using a

bootstrapping approach49. One-year blocks of the wind data are
randomly permuted to generate 1000 scrambled time series, so
that the temporal relation between wind and SST is lost. It is then
determined how many of the scrambled MCAs yield a statistic
larger than that of the original, unscrambled time series. This
number is divided by the number of permutations to obtain the P-
value. The statistics that are typically examined for a given mode
include the explained squared covariance fraction, the correlation
between the expansion coefficients, and the singular value. Of
these, the singular value is typically recommended and is the
measure used in the present study.

Observation-based data
We use the National Centers for Environmental Prediction/
National Center for Atmospheric Research (NCEP/NCAR) Reanalysis
product50 as our observation-based dataset. Reanalyses are
climate model simulations that are constrained by observations
from many different sources (in-situ, satellite, radiosondes etc.) to
obtain a best estimate of the true state of the atmosphere that is
gap-free in time and space. The NCEP/NCAR Reanalysis is chosen
as it is the dataset used to define the reference PMM index. Using
other datasets yields very similar results. The analysis period is
1950–2005, the same as the one used for the definition of the
reference PMM on the PMM website48.

Model output
We use output from the preindustrial control experiment
(piControl) of the Coupled Model Intercomparison Project Phase
6 (CMIP6)51. piControl is chosen as it offers long time series under
steady radiative forcing. The 44 models chosen for our analysis are
listed in the Supplementary Table 1.

ENSO indices
Many measures of ENSO activity have been devised. These are
usually simple area averages of equatorial Pacific SST. Chiang and
Vimont1 use the cold tongue index (CTI), defined as SST averaged
over the region 180°-90°W and 6°S-6°N, to regress out the ENSO
influence prior to their MCA. This measure is indeed a good
indicator of the canonical ENSO, that is most pronounced in the
eastern equatorial Pacific and also called cold tongue (CT) ENSO. It
does, however, not take into account SST off the Peruvian coast.
More importantly, it does not include ENSO variability west of the

date line, which is referred to as El Niño Modoki28 or Western
Pacific (WP) ENSO29. Takahashi et al.29 suggest using a pair of
indices to account for both the CT and WP flavors of ENSO. One of
their suggestions relies on the well-established Niño 4 (SSTs
averaged over 160°E-150°W, 5°S-5°N) and Niño 1+2 (SSTs
averaged over 90°-80°W, 10°S-0) indices. These two indices are
linearly combined to yield a pair of roughly orthogonal indices:
C = 1.7*Nino4 – 0.1*Nino12, and E = Nino12 – 0.5*Nino4. We use
this index pair to perform a more complete ENSO removal prior to
the calculation of the PMM index. We refer to the PMM index
modified in this way as the PMM_CPCT.

The Wind-Evaporation-SST (WES) feedback
A coupled air-sea feedback loop, in which a weakening of the
subtropical trade winds causes a reduction of sea-surface evapora-
tion11,12. This reduces the cooling by latent heat flux and results in a
warming of the underlying SSTs. The resulting warm SST anomalies
influence the large-scale atmospheric circulation so as to further
reduce the strength of the trade winds. Since the weakening of the
trades is most pronounced equatorward of the SST anomalies, it
has been suggested that the pattern slowly propagates equator-
ward. The WES feedback relies on thermodynamic processes. This
sets it apart from the Bjerknes feedback in the equatorial Pacific,
which depends on subsurface ocean dynamics.

DATA AVAILABILITY
The NCEP/NCAR reanalysis can be obtained from https://psl.noaa.gov/data/gridded/
data.ncep.reanalysis.html. The CMIP6 model data can be downloaded from https://
esgf-node.llnl.gov/search/cmip6/.

CODE AVAILABILITY
The analysis code is available via GitHub: https://github.com/atlanticingo/
pmm_definition.
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